## Interpreting geospatial (i.e. map) data to identify threats to sustainability

You will analyze erosion rates from geospatial figures.

You will discuss the influence of erosion on soil sustainability.

You will confront how your ideas on erosion change given new data and you will reflect on the learning process.

## Which environment is most erosive?




Or agricultural landscapes?


## Directions

In small groups, examine 2 figures showing erosion in the United States: A) showing natural/geologic erosion (non-human) \& B) showing erosion from human activity

## On a notecard:

1. Identify units of erosion measurement in Figure A. Convert the average erosion rate into $\mathrm{mm} / \mathrm{yr}$.
2. Figure A: Determine which regions in the United States have the highest continental erosion rates and predict why these locations have the highest rates.
3. Figure B: Determine which regions in the United states have the greatest erosion from human activity.
4. Describe how that rate compares to the natural (continental) rate of erosion.
5. Predict the potential source of human erosion in Figure B.

Plan to report your small group findings (from your notecard) to the class as the figures are projected.


3. Use the map legend to identify which types of landscapes or environments have the greatest erosion from human activity.
(Wilkinson and McElroy, 2007, GSA Bulletin January/February, 2007 vol. 119 no. 1-2 140-156 )
4. How does that average rate compare to the average natural rate of erosion?
5. Predict the potential source of human erosion in Figure B.


# Visualize how much soil thickness will change in your lifetime 

Recall average natural rates of cropland erosion is
$600 \mathrm{~m} / \mathrm{my}$ or $6 \mathrm{~mm} /$ decade

# Visualize the average cropland erosion in <br> 1 year $=0.6 \mathrm{~mm}$ 

Visualize the average soil formation in
1 year $=0.036 \mathrm{~mm}$

## Visualize the average

 cropland erosion in 1 decade $=6 \mathrm{~mm}$Visualize the average soil formation in 1 decade $=0.36 \mathrm{~mm}$

Approximately equivalent to the thickness of

- 2 business cards
- One credit card

Approximately equivalent to the thickness of

- 2 pieces of aluminum foil
- Half the thickness of a piece of copier paper

Approximately equivalent to the thickness of

- Four $\$ 100$ bills
- One business card

Average rate of cropland erosion $=6 \mathrm{~mm} /$ decade . Average rate of soil formation $=0.36 \mathrm{~mm} /$ decade . An average soil thickness $=\sim 15 \mathrm{~cm}(150 \mathrm{~mm})$.

At these rates, how much soil would be lost in the remainder of your lifetime ( $\sim 60$ years)?

At current rates, how long would it take to completely remove 15 cm of soil?

Average rate of cropland erosion $=6 \mathrm{~mm} /$ decade . Average rate of soil formation $=0.36 \mathrm{~mm} /$ decade . An average soil thickness $=\sim 15 \mathrm{~cm}(150 \mathrm{~mm})$.

At these rates, how much soil would be lost in the remainder of your lifetime ( $\sim 60$ years) $?=33.84 \mathrm{~mm}$

At current rates*, how long would it take to completely remove 15 cm of soil? = 266 years
*Erosion rates $=$ soil eroded - soil formed $=6-0.36=5.64 \mathrm{~mm} /$ decade

Average rate of cropland erosion $=6 \mathrm{~mm} /$ decade . Average rate of soil formation $=0.36 \mathrm{~mm} /$ decade . An average soil thickness $={ }^{\sim} 15 \mathrm{~cm}(150 \mathrm{~mm})$.

## At these rates, how much soil would be lost in the remainder of your lifetime ( $\sim 60$ years) $?=33.84 \mathrm{~mm}$

At maximum rates*, how long would it take to completely remove 15 cm of soil? = 63 years
${ }^{*}$ Maximum erosion rates $=$ soil eroded - soil formed $=24-0.36=23.64 \mathrm{~mm} /$ decade

In Figure A, exploring natural erosion rates, areas in white and green have erosion rates that are less than soil production rates ( $30 \mathrm{~m} / \mathrm{my}$ ). In figure B, exploring cropland erosion rates, all regions that are colored in have erosion rates that exceed soil production rates. Based on the two figures, 1) how much area could potentially generate new soil? (Estimate to the nearest 10\%.) 2) Is the soil at your location threatened under present erosion rates?

Figure A .
 January/February, 2007 vol. 119 no. 1-2 140-156 )

In figure A, exploring natural erosion rates, areas in white and green have erosion rates that are less than soil production rates ( $30 \mathrm{~m} / \mathrm{my}$ ). In figure B, exploring cropland erosion rates, all regions that are colored in have erosion rates that exceed soil production rates. Based on the two figures, 1) how much area could potentially generate new soil? (Estimate to the nearest 10\%.) 2) Is the soil at your location threatened under present erosion rates?

Figure A .


1) $20 \%$
2) If your location is not contained within the circled areas, topsoil is threatened.

Figure B.

(Wilkinson and McElroy, 2007, GSA Bulletin January/February, 2007 vol. 119 no. 1-2 140-156 )

## Follow-Up Assignment

1) Based on your work today, how does agriculture threaten the sustainability of soil? (2 pts)

A correct answer will consider how the balance of available fertile soil relates to soil erosion and soil production. (1 pt) It should also consider the spatial extent of erosion (1 pt).
2) Does what you learned today through exploring the figures of natural and cropland erosion support or conflict with your initial perceptions of erosion? (1 pt)
(Your answer should refer to your initial impressions of erosion as we looked at the pictures of agricultural and mountain erosion. Did you think mountains or croplands were more erosive? Is this consistent with what you learned by looking at the figures?)
3) Reflecting on your comparison between the two erosion figures, what question(s) do you still have?

1 question required, more allowed (1 pt).

